Hitoshi Yamaguchi and Fumiyoshi Ishikawa*

Research Institute, Daiichi Seiyaku Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 132, Japan Received July 8, 1980

Reaction of 2,4-dichlorothienopyrimidines and -quinazolines 1 with sodium borohydride gave the corresponding 2-chloro-3,4-dihydro derivatives 2. Some nucleophilic substitutions of 2b afforded 2-substituted derivatives 3b-7b and reaction of 2g,h with ethyl bromoacetate yielded selectively the corresponding 3-substituted compounds 8g,h which were derived to imidazo[2,1-b]quinazolin-2-ones 9g,h.

J. Heterocyclic Chem., 18, 67 (1981).

Although the 2-aminothiophene-3-methanol derivatives is a favorable intermediate to synthesize the 3,4-dihydrothieno[2,3-d]pyrimidine ring, the preparation may be difficult because of the unstability of the 2-aminothiophene derivatives (1). Only 4-alkyl-3,4-dihydrothieno[2,3-d]pyrimidines were prepared by reaction of thieno[2,3-d]pyrimidine with alkyl lithiums (2). To our knowledge, the preparation of 4-unsubstituted 3,4-dihydrothieno[2,3-d]pyrimidine derivatives has not been reported. This paper deals with a facile synthesis and reaction of new and useful 2-chloro-3,4-dihydrothienopyrimidines and -quinazolines.

We have recently reported that reduction of 2-chloro-4-phenylthieno[2,3-d]pyrimidine with sodium borohydride gave the corresponding 2-chloro-3,4-dihydro derivative (3). This result shows that selective reduction at position 3 and 4 occurs without affecting the 2-chloro atom. Generally, in the reactions of 2,4-dichloropyrimidine derivatives with some nucleophiles the 4-chlorine atom is more reactive

than the 2-chlorine atom. In addition, imidoyl chlorides is reduced with sodium borohydride to give the corresponding amines (4). Thus, we expect that treatment of 2,4-dichloropyrimidine derivatives with sodium borohydride may give the corresponding 2-chloro-3,4-dihydropyrimidine derivatives.

All the 2,4-dichlorothienopyrimidines, such as 5,6-dimethylthieno[2,3-d]- la (5), 5,6,7,8-tetrahydro[1]benzothieno[2,3-d]- lb (6), [1]benzothieno[2,3-d]- lc, thieno-[3,2-d]- ld (7) and thieno[3,4-d]pyrimidine le (8), were reacted with sodium borohydride in a solution of chloroform and ethanol at 25°-50° to give expected 2-chloro-3,4-dihydro derivatives 2a-e. Similar reaction of 2,4-dichloroquinazoline derivatives lf-h also easily gave the corresponding 2-chloro-3,4-dihydro derivatives 2f-h. The structures of the compounds 2 were supported by the data of microanalysis and pmr spectra which showed singlet signal of methylene protons at position 4 at δ 4.5-4.8 as

CI
A
$$N + C_1$$

A $N + C_1$

Scheme

shown in Table I. Attempt to similarly reduce other 2,4-dichloropyrimidine derivative, such as 2,4-dichloropyrimidine, 2,4-dichloro-5,6,7,8-tetrahydro[1]benzofuro[2,3-d]pyrimidine, 2,4-dichloropyrrolo[2,3-d]pyrimidine and 2,4-dichloropyrido[2,3-d]pyrimidine, did not succeed.

2-Chlorine atom of compounds **2** was active against some nucleophiles. Reaction of 2-chloro-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidine **2b** with sodium ethoxide, sodium methanethiolate and ammonia gave 2-ethoxy **3b**, 2-methylthio **4b**, and 2-amino **5b** derivatives, respectively. Heating **2b** in acetic acid afforded 2-(1H)-one derivative **6b**. Reaction of **2b** with thiourea followed by treatment with sodium hydroxide gave 2-(1H)thione derivative **7b**.

The utility of compounds 2 was demonstrated by a novel synthesis of 1,2,3,5-tetrahydroimidazo[2,1-b]quinazolin-2-one derivatives 9 which were potent blood platelet aggregation inhibitors (9). Reaction of 2g,h with ethyl bromoacetate in the presence of excess potassium carbonate gave predominantly corresponding 3-substituted derivatives 8g-h. Heating 8g,h in ethanolic ammonia in a sealed tube yielded 9g,h, respectively, which were identical with the sample prepared by Beverung's method. Similar preparation of 1,2,3,5-tetrahydroimidazo[1,2-a]-thieno-[2,3-d]-, -[3,2-d]-, and -[3,4-d]-pyrimidin-2-one derivatives with the same potent inhibiting activity will be reported elsewhere (10).

 $Table \ I$ $2-Chloro-3.4-dihydrothien opyrimidines \ and \ -quinazolines$

Compound No.	Yield %	M.p. °C	Ir cm ⁻¹	Formula		Analysis % Calcd. (Found)	Pmr (a) δ
2a	71	170-172	3150 1580	$C_8H_9CIN_2S$	C H N	47.87 (47.73) 4.52 (4.47) 13.96 (13.88)	1.86 (s, 3H, 5-CH ₃) 2.19 (s, 3H, 6-CH ₃) 4.54 (s, 2H, 4-CH ₂)
2b	74	141-143	3140 1580	$C_{10}H_{11}CIN_2S$	C H N	52.97 (52.79) 4.89 (4.80) 12.36 (12.30)	1.6-1.9 (m, 4H, 6-, 7-CH ₂) 2.1-2.45 (m, 2H, 5-CH ₂) 2.45-2.8 (m, 2H, 8-CH ₂) 4.58 (s, 2H, 4-CH ₂)
2 e	83	173-177	3160 1590 1570	$C_{10}H_7CIN_2S$	C H N	53.93 (54.05) 3.17 (3.32) 12.58 (12.46)	4.89 (s, 2H, 4-CH ₂) 7.1-7.4 (m, 3H, aromatic protons) 7.55-7.8 (m, 1H, 8-CH)
2d	84	138-140	3150 1595 1540	$C_6H_5CIN_2S$	C H N	41.74 (41.58) 2.92 (2.98) 16.23 (16.45)	4.80 (s, 2H, 4-CH ₂) 6.69 (s, 1H, 6-CH) 7.31 (s, 1H, 7-CH)
2 e	89	130-132	3160 1605 1505	C ₆ H ₅ CIN ₂ S	C H N	41.74 (41.56) 2.92 (2.99) 16.23 (16.23)	4.65 (s, 2H, 4-CH ₂) 6.72 (s, 1H, 5-CH) 6.95 (s, 1H, 7-CH)
2f	84	97-101	1660	$C_8H_7CIN_2$	C H N	57.67 (57.58) 4.24 (4.27) 16.82 (17.06)	4.77 (s, 2H, 4-CH ₂) 6.9-7.4 (m, 4H, aromatic protons)
2g	92	unclear (b)	3150 1620 1580	C,H,CIN2	C H N	59.84 (59.63) 5.02 (4.99) 15.51 (15.57)	2.13 (s, 3H, 5-CH ₃) 4.70 (s, 2H, 4-CH ₂) 6.7-7.4 (m, 3H, aromatic protons)
2h	94	unclear (b)	3270 1620 1595	$C_8H_5Cl_3N_2$	C H N	40.80 (40.68) 2.14 (2.21) 11.90 (11.81)	4.67 (s, 2H, 4-CH ₂) 6.80 (d, 1H, 7-CH) 7.26 (d, 1H, 8-CH)

⁽a) Solvent: DMSO-d6 for 2d and 2e. (b) The compounds did not show the clear melting point because of the unstability under heating.

EXPERIMENTAL

All melting points are uncorrected. Ir spectra were recorded with a Hitachi 285 spectrometer. Using a Hitachi Perkin-Elmer R-20B (60 MHz) or a Hitachi R-40 (90 MHz) instrument, pmr spectra were determined in deuterochloroform, unless otherwise stated, with tetramethylsilane as an internal standard. Most of the starting 2,4-dichloropyrimidines 1 are known compounds and were prepared by means of the literature methods.

General Procedure for the Preparation of 2-Chloro-3,4-dihydrothieno-pyrimidines and -quinazolines (2).

Sodium borohydride (200 mmoles) was added portionwise to a solution of 1 (40 mmoles) in chloroform (100 ml.) and ethanol (40 ml.) in ice-bath. The mixture was stirred at 40-50° for 14 hours [in the case of 1c, g-h at 25° for 2 hours]. The solvent was evaporated and the residual solid was washed with water and ethanol to give crude 2 which was recrystallized from chloroform-ethanol.

Results are shown in Table I.

2-Ethoxy-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidine (3b).

Compound **2b** (2.27 g., 10 mmoles) was added to a solution of sodium metal (0.23 g., 10 mmoles) in ethanol (30 ml.). The mixture was heated under reflux for 1 hour under nitrogen atmosphere and concentrated *in vacuo*. The residue was mixed with water and extracted with chloroform. The extract was washed with water, dried, and concentrated *in vacuo*. The residue was recrystallized from benzene-hexane to give 1.23 g. (52%) of **3b**, m.p. 111-114°; ir (potassium bromide): 3250, 1570, 1290, 1270 cm⁻¹; pmr: δ 1.26 (t, 3H, CH₃), 1.6-2.0 (m, 4H, 6-,7-CH₂), 2.2-2.5 (m, 2H, 5-CH₂), 2.5-2.7 (m, 2H, 8-CH₂), 4.23 (q, 2H, 0-CH₃), 4.53 (s, 2H, 4-CH₂). Anal. Calcd. for C₁₂H₁₆N₂OS: C, 60.98; H, 6.82; N, 11.85. Found: C, 60.65; H, 6.85; N, 12.31.

2-Methylthio-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidine (4b).

A mixture of **2b** (5.70 g., 25 mmoles), 20% aqueous sodium methane thiolate solution (25 ml.), tetra(n-butyl)ammonium iodide (0.50 g.) and benzene (200 ml.) was heated under reflux for 1 hour under nitrogen atmosphere. After cooling, benzene layer was separated, washed with water, dried, and concentrated *in vacuo*. The residue was recrystallized from benzene-hexane to give 4.90 g. (68%) of **4b**, m.p. 125-126°; ir (potassium bromide): 3150, 2900, 1540, 1520, 1280, 1260, cm⁻¹; pmr: δ 1.6-1.9 (m, 4H, 6,7-CH₂), 2.2-2.4 (m, 2H, 5-CH₂), 2.47 (s, 3H, S-CH₃), 2.6-2.8 (m, 2H, 8-CH₂), 4.52 (s, 2H, 4-CH₂).

Anal. Calcd. for $C_{11}H_{14}N_2S_2$: C, 55.42; H, 5.92; N, 11.75. Found: C, 55.52; H, 5.50; N, 11.67.

2-Amino-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidine Hydrochloride (5b).

A solution of **2b** (6.30 g., 28 mmoles) in 10% ammonia-ethanol solution (50 ml.) was heated at 110° for 37 hours in a sealed tube under nitrogen atmosphere. After cooling, an insoluble material was filtered off and the filtrate was concentrated to one-third volume *in vacuo*. The crystal separated was collected by filtration, washed with ethanol. The crude product was recrystallized from methanol to give 4.31 g. (63%) of **5b**, m.p. 267-270° dec.; ir (potassium bromide): 3280, 3030, 1670, 1620, 1580 cm⁻¹; pmr (DMSO-d₆): δ 1.6-1.9 (m, 4H, 6-, 7-CH₂), 2.2-2.5 (m, 2H, 5-CH₂), 2.5-2.75 (m, 2H, 8-CH₂), 4.41 (s, 2H, 4-CH₂).

Anal. Calcd. for $C_{10}H_{14}CIN_3S$: C, 49.28; H, 5.79; N, 17.24. Found: C, 48.98; H, 6.05; N, 17.59.

3,4,5,6,7,8-Hexahydro[1]benzothieno[2,3-d]pyrimidin-2-(1H)one (6b).

A solution of **2b** (4.40 g., 19.4 mmoles) in acetic acid (50 ml.) was heated under reflux for 1 hour and concentrated *in vacuo*. The residue was washed with methanol and recrystallized from acetic acid to give 2.99 g. (74%) of **6b**, m.p. 259-261° dec.; ir (potassium bromide): 3230, 3100, 1680 cm⁻¹; pmr (DMSO- d_6): δ 1.6-1.9 (m, 4H, 6-,7-CH₂), 2.2-2.45 (m, 2H, 5-CH₂), 2.45-2.65 (m, 2H, 8-CH₂), 4.18 (d, J = 1.5 Hz, 2H, 4-CH₂), 6.68

(br, 1H, 3-NH), 9.05 (br, 1H, 1-NH).

Anal. Calcd. for $C_{10}H_{12}N_2OS$: C, 57.67; H, 5.81; N, 13.45. Found: C, 57.37; H, 5.72; N, 13.09.

3,4,5,6,7,8-Hexahydro[1]benzothieno[2,3-d]pyrimidine-2-(1H)thione (7b).

A mixture of **2b** (0.68 g., 3 mmoles) and thiourea (0.25 g., 3.3 mmoles) in ethanol (30 ml.) was heated under reflux for 16 hours under nitrogen atmosphere and then 8% sodium hydroxide solution (10 ml.) was added to the mixture. The mixture was successively heated under reflux for 2 hours under nitrogen atmosphere. After cooling, the mixture was acidified with 10% hydrochloric acid and concentrated to half-volume in vacuo. The residue was extracted with chloroform. The extract was washed with water, dried, and concentrated in vacuo. The residue was recrystallized from chloroform-ethanol to give 0.27 g. (40%) of **7b**, m.p. 214-216°; ir (potassium bromide): 3200-2800, 1510, 1200, cm⁻¹; pmr (DMSO- d_6): δ 1.6-1.9 (m, 4H, 6-,7-CH₂), 2.2-2.4 (m, 2H, 5-CH₂), 2.45-2.7 (m, 2H, 8-CH₂), 4.25 (d, J = 2 Hz, 2H, 4-CH₂), 8.40 (br, 1H, 3-NH), 10.56 (br, 1H, 1-NH).

Anal. Calcd. for $C_{10}H_{12}N_2S_2$: C, 53.54; H, 5.39; N, 12.49. Found: C, 53.36; H, 5.77; N, 12.38.

Ethyl 2-Chloro-5-methyl-3,4-dihydroquinazoline-3-acetate (8g).

A mixture of **2g** (2.00 g., 11 mmoles), ethyl bromoacetate (2.00 g., 12 mmoles) and powdered potassium carbonate (4.50 g.) in methyl ethyl ketone (50 ml.) was heated under reflux for 3 hours with vigorous stirring. After cooling, a precipitate was filtered off and the filtrate was concentrated *in vacuo*. The residue was recrystallized from ether-petroleum ether to give 2.15 g. (73%) of **8g**, m.p. 81-82°; ir (potassium bromide): 1740, 1605, 1570 cm⁻¹ pmr: δ 1.25 (t, 3H, CH₃), 2.10 (s, 3H, 5-CH₃), 4.20 (s, 2H, CH₂), 4.25 (q, 2H, O-CH₂), 4.70 (s, 2H, 4-CH₂), 6.80-7.2 (m, 3H, aromatic protons).

Anal. Calcd. for $C_{13}H_{15}ClN_2O_2$: C, 58.54; H, 5.67; N, 10.50. Found: C, 58.58; H, 5.72; N, 10.42.

Ethyl 2,5,6-Trichloro-3,4-dihydroquinazoline-3-acetate (8h).

Following the procedure similar to preparation of **8g**, **8h** was obtained in 76% yield, m.p. 115-116° (from ether); ir (potassium bromide): 1750, 1605, 1585 cm⁻¹; pmr: δ 1.31 (t, 3H, CH₃), 4.26 (s, 2H, CH₂), 4.28 (q, 2H, O-CH₂), 4.77 (s, 2H, 4-CH₂), 6.93 (d, J = 9 Hz, 1H, 7-CH), 7.30 (d, J = 9 Hz, 1H, 8-CH).

Anal. Calcd. for $C_{12}H_{11}Cl_3N_2O_2$: C, 44.81; H, 3.45; N, 8.71. Found: C, 44.60; H, 3.34; N, 8.48.

6-Methyl-1,2,3,5-tetrahydroimidazo[2,1-b]quinazolin-2-one Hydrochloride (9 \mathbf{g}).

A solution of **8g** (2.00 g., 7.5 mmoles) in 10% ethanolic ammonia solution (15 ml.) was heated at 120° for 16 hours in a sealed tube. After cooling, a precipitate was collected by filtration, washed with water, and dissolved in 10% methanolic hydrogen chloride solution (20 ml.). The solution was concentrated *in vacuo* and the residue was crystallized from methanol-ether to give 1.38 g. (72%) of **9g**, m.p. 260° dec. [lit. (9a) m.p. > 250°]; ir (potassium bromide): 1800, 1690, 1605, 1590 cm⁻¹; pmr (DMSO-d₆): δ 2.20 (s, 3H, 6-CH₃), 4.32 (s, 2H, 3-CH₂), 4.70 (s, 2H, 5-CH₂), 7.0-7.35 (m. 3H, aromatic protons).

Anal. Calcd. for $C_{11}H_{12}CIN_3O\cdot H_2O$: C, 51.67; H, 5.52; N, 16.43. Found: C, 51.90; H, 5.41; N, 16.41.

6,7-Dichloro-1,2,3,5-tetrahydroimidazo[2,1-b]quinazolin-2-one Hydrochloride (**9h**).

Following the procedure similar to preparation of **9g**, **9h** was obtained in 78% yield, m.p. > 280° [lit. (9b), m.p. > 250°]; ir (potassium bromide): 1805, 1680, 1575 cm⁻¹; pmr (trifluoroacetic acid): δ 4.62 (s, 2H, 3-CH₂), 5.00 (s, 2H, 5-CH₂), 7.27 (d, J = 9 Hz, 1H, 7-CH), 7.67 (d, J = 9 Hz, 1H, 8-CH).

Anal. Calcd. for $C_{10}H_8Cl_3N_3O$: 0.5 H_2O : C, 39.82; H, 3.01; N, 13.93. Found: C, 39.50; H, 3.08; N, 13.88.

REFERENCES AND NOTES

- (1) H. D. Hartough, "The Chemistry of Heterocyclic Compounds: Thiophene and Its Derivatives" Interscience Publishers, Inc., New York, 1952, p. 228; D. L. Eck and G. W. Stacy, J. Heterocyclic Chem., 6, 147 (1969); S, Blechert, R. Gericke and E. Winterfeldt, Chem. Ber., 106, 368 (1973); K. Gewald, Khim. Geterotsikl Soedin., 1299 (1976).
- (2) J. Bourguignon, M. Moreau, G. Queguiner and P. Pastour, Bull. Soc. Chim. Fr., 676 (1977).
 - (3) F. Ishikawa and H. Yamaguchi, Chem. Pharm. Bull., submitted.
- (4) Atta-ur-Rahman, A. Basha and N. Waheed, Tetrahedron Letters, 219 (1976).
 - (5) B. Narr and E. Woitum, German Offen. 2,200,764 (1973); Chem.

- Abstr., 79, 92270v (1973).
- (6) M. Robba, P. Touzot and R. M. Riquelme, C. R. Acad. Sci., Ser C, 276, 93 (1973).
- (7) B. Narr, E. Woitum, G. Ohnacker, R. Kadatz and U. Horch, German Offen. 2,058,086 (1972); Chem. Abstr., 77, 88539f (1972).
- (8) Union Chimique-Chemische Bedrijven, Belgian Patent 76983 (1972); Chem. Abstr., 77, 5514 (1972).
- (9a) W. N. Beverung and R. A. Partyka, J. Med. Chem., 18, 224 (1975).
 (b) T. A. Jenks, W. N. Beverung and R. A. Partyka, U. S. Patent 4,146,718 (1979); Chem. Abstr., 91,5248 (1979).
- (10) F. Ishikawa, A. Kosasayama, H. Yamaguchi, Y. Watanabe, J. Saegusa, S. Shibamura, K. Sakuma, S. Ashida and Y. Abiko, *J. Med. Chem.*, submitted.